Solve 4x² - 16x + 15 = 0 for x.
First method
4x² - 16x + 15 = 0
(2x - 3)(2x - 5) = 0
x = 3 / 2; 5 / 2
Second method
4x² - 16x + 15 = 0
4x² - 16x + 16 = 1
(2x - 4)² = 1
2x - 4 = ±1
2x = 4 ± 1
x = (4 ± 1) / 2
x = 5 / 2; 3 / 2
Third method
4x² - 16x + 15 = 0
a = 4, b = -16 and c = 15
b² - 4ac = 16
x = (16 ± √16) / 8
x = (16 ± 4) / 8
x = (4 ± 1) / 2
x = 5 / 2; 3 / 2
Solve 6x² - 19x + 15 = 0 for x.
First method
6x² - 19x + 15 = 0
(2x - 3)(3x - 5) = 0
x = 3 / 2; 5 / 3
Second method
6x² - 19x + 15 = 0
144x² - 456x + 360 = 0
144x² - 456x + 361 = 1
(12x - 19)² = 1
12x - 19 = ±1
12x = 19 ± 1
x = (19 ± 1) / 12
x = 5 / 3; 3 / 2
Third method
6x² - 19x + 15 = 0
a = 6, b = -19 and c = 15
b² - 4ac = 1
x = (19 ± √1) / 12
x = (19 ± 1) / 12
x = 5 / 3; 3 / 2
Solve 6x² - 25x + 25 = 0 for x.
First method
6x² - 25x + 25 = 0
(2x - 5)(3x - 5) = 0
x = 5 / 2; 5 / 3
Second method
6x² - 25x + 25 = 0
144x² - 600x + 600 = 0
144x² - 600x + 625 = 25
(12x - 25)² = 25
12x - 25 = ±5
12x = 25 ± 5
x = (25 ± 5) / 12
x = 5 / 2; 5 / 3
Third method
6x² - 25x + 25 = 0
a = 6, b = -25 and c = 25
b² - 4ac = 25
x = (25 ± √25) / 12
x = (25 ± 5) / 12
x = 5 / 2; 5 / 3