Solve 10x² - 19x + 6 = 0 for x.
First method
10x² - 19x + 6 = 0
(2x - 3)(5x - 2) = 0
x = 3 / 2; 2 / 5
Second method
10x² - 19x + 6 = 0
400x² - 760x + 240 = 0
400x² - 760x + 361 = 121
(20x - 19)² = 121
20x - 19 = ±11
20x = 19 ± 11
x = (19 ± 11) / 20
x = 3 / 2; 2 / 5
Third method
10x² - 19x + 6 = 0
a = 10, b = -19 and c = 6
b² - 4ac = 121
x = (19 ± √121) / 20
x = (19 ± 11) / 20
x = 3 / 2; 2 / 5
Solve 10x² - 21x + 9 = 0 for x.
First method
10x² - 21x + 9 = 0
(2x - 3)(5x - 3) = 0
x = 3 / 2; 3 / 5
Second method
10x² - 21x + 9 = 0
400x² - 840x + 360 = 0
400x² - 840x + 441 = 81
(20x - 21)² = 81
20x - 21 = ±9
20x = 21 ± 9
x = (21 ± 9) / 20
x = 3 / 2; 3 / 5
Third method
10x² - 21x + 9 = 0
a = 10, b = -21 and c = 9
b² - 4ac = 81
x = (21 ± √81) / 20
x = (21 ± 9) / 20
x = 3 / 2; 3 / 5
Solve 15x² - 31x + 10 = 0 for x.
First method
15x² - 31x + 10 = 0
(3x - 5)(5x - 2) = 0
x = 5 / 3; 2 / 5
Second method
15x² - 31x + 10 = 0
900x² - 1,860x + 600 = 0
900x² - 1,860x + 961 = 361
(30x - 31)² = 361
30x - 31 = ±19
30x = 31 ± 19
x = (31 ± 19) / 30
x = 5 / 3; 2 / 5
Third method
15x² - 31x + 10 = 0
a = 15, b = -31 and c = 10
b² - 4ac = 361
x = (31 ± √361) / 30
x = (31 ± 19) / 30
x = 5 / 3; 2 / 5