Complete the square in (15x² - 16x + 4) and find its minimum value and the x-value where the minimum value occurs.
15x² - 16x + 4 = {(15x - 8)² - 4} / 15
15x² - 16x + 4 >= -4 / 15
{(15x - 8)² - 4} / 15 >= -4 / 15
minimum value = -4 / 15
(15x - 8)² = 0
x = 8 / 15
Complete the square in (15x² - 19x + 6) and find its minimum value and the x-value where the minimum value occurs.
15x² - 19x + 6 = {(30x - 19)² - 1} / 60
15x² - 19x + 6 >= -1 / 60
{(30x - 19)² - 1} / 60 >= -1 / 60
minimum value = -1 / 60
(30x - 19)² = 0
x = 19 / 30
Complete the square in (25x² - 25x + 6) and find its minimum value and the x-value where the minimum value occurs.
25x² - 25x + 6 = {(10x - 5)² - 1} / 4
25x² - 25x + 6 >= -1 / 4
{(10x - 5)² - 1} / 4 >= -1 / 4
minimum value = -1 / 4
(10x - 5)² = 0
x = 1 / 2