Welcome to WildDream Art!

An original art site and communication platform about animal, anthro and fantasy creature for all ages

App Download

Log in or Register

Solving equation systems part four



0 user (users) favorited this work
  • View Count:451
  • Rating:General - Intended for all ages.
  • Publish Time:2021-12-02 08:57

Solving equation systems part four



Solve {6x + 6y = 19, 3xy = 5}.

6x + 6y = 19

3xy = 5

6y = 19 - 6x

y = (19 - 6x) / 6

3x(19 - 6x) / 6 = 5

6x² - 19x + 10 = 0

(2x - 5)(3x - 2) = 0

x = 5 / 2; 2 / 3

y = {19 - 6(5 / 2)} / 6; {19 - 6(2 / 3)} / 6

y = 2 / 3; 5 / 2

solutions as (2 / 3, 5 / 2) and (5 / 2, 2 / 3)

6x + 6y = 19 and 3xy = 5 cutting each other at (2 / 3, 5 / 2) and (5 / 2, 2 / 3)

 

Solve {3x + 3y = 7, 9xy = 10}.

3x + 3y = 7

9xy = 10

3y = 7 - 3x

y = (7 - 3x) / 3

9x(7 - 3x) / 3 = 10

9x² - 21x + 10 = 0

(3x - 2)(3x - 5) = 0

x = 2 / 3; 5 / 3

y = {7 - 3(2 / 3)} / 3; {7 - 3(5 / 3)} / 3

y = 5 / 3; 2 / 3

solutions as (2 / 3, 5 / 3) and (5 / 3, 2 / 3)

3x + 3y = 7 and 9xy = 10 cutting each other at (2 / 3, 5 / 3) and (5 / 3, 2 / 3)

 

Solve {10x + 10y = 31, 2xy = 3}.

10x + 10y = 31

2xy = 3

10y = 31 - 10x

y = (31 - 10x) / 10

2x(31 - 10x) / 10 = 3

10x² - 31x + 15 = 0

(2x - 5)(5x - 3) = 0

x = 5 / 2; 3 / 5

y = {31 - 10(5 / 2)} / 10; {31 - 10(3 / 5)} / 10

y = 3 / 5; 5 / 2

solutions as (3 / 5, 5 / 2) and (5 / 2, 3 / 5)

10x + 10y = 31 and 2xy = 3 cutting each other at (3 / 5, 5 / 2) and (5 / 2, 3 / 5)

 

Solve {10x + 10y = 19, 5xy = 3}.

10x + 10y = 19

5xy = 3

10y = 19 - 10x

y = (19 - 10x) / 10

5x(19 - 10x) / 10 = 3

10x² - 19x + 6 = 0

(2x - 3)(5x - 2) = 0

x = 3 / 2; 2 / 5

y = {19 - 10(3 / 2)} / 10; {19 - 10(2 / 5)} / 10

y = 2 / 5; 3 / 2

solutions as (2 / 5, 3 / 2) and (3 / 2, 2 / 5)

10x + 10y = 19 and 5xy = 3 cutting each other at (2 / 5, 3 / 2) and (3 / 2, 2 / 5)

 

Solve {10x + 10y = 21, 10xy = 9}.

10x + 10y = 21

10xy = 9

10y = 21 - 10x

y = (21 - 10x) / 10

10x(21 - 10x) / 10 = 9

10x² - 21x + 9 = 0

(2x - 3)(5x - 3) = 0

x = 3 / 2; 3 / 5

y = {10 - 21(3 / 2)} / 10; {10 - 21(3 / 5)} / 10

y = 3 / 5; 3 / 2

solutions as (3 / 5, 3 / 2) and (3 / 2, 3 / 5)

10x + 10y = 21 and 10xy = 9 cutting each other at (3 / 5, 3 / 2) and (3 / 2, 3 / 5)

 

Solve {15x + 15y = 31, 3xy = 2}.

15x + 15y = 31

3xy = 2

15y = 31 - 15x

y = (31 - 15x) / 15

3x(31 - 15x) / 15 = 2

15x² - 31x + 10 = 0

(3x - 5)(5x - 2) = 0

x = 5 / 3; 2 / 5

y = {31 - 15(5 / 3)} / 15; {31 - 15(2 / 5)} / 15

y = 2 / 5; 5 / 3

solutions as (2 / 5, 5 / 3) and (5 / 3, 2 / 5)

15x + 15y = 31 and 3xy = 2 cutting each other at (2 / 5, 5 / 3) and (5 / 3, 2 / 5)


Comment

Please log in before comment
0 user (users) favorited this work
  • View Count:451
  • Rating:General - Intended for all ages.
  • Publish Time:2021-12-02 08:57