Solve 6x² - 19x + 10 = 0 for x.
First method
6x² - 19x + 10 = 0
(2x - 5)(3x - 2) = 0
x = 5 / 2; 2 / 3
Second method
6x² - 19x + 10 = 0
144x² - 456x + 240 = 0
144x² - 456x + 361 = 121
(12x - 19)² = 121
12x - 19 = ±11
12x = 19 ± 11
x = (19 ± 11) / 12
x = 5 / 2; 2 / 3
Third method
6x² - 19x + 10 = 0
a = 6, b = -19 and c = 10
b² - 4ac = 121
x = (19 ± √121) / 12
x = (19 ± 11) / 12
x = 5 / 2; 2 / 3
Solve 9x² - 21x + 10 = 0 for x.
First method
9x² - 21x + 10 = 0
(3x - 2)(3x - 5) = 0
x = 2 / 3; 5 / 3
Second method
9x² - 21x + 10 = 0
36x² - 84x + 40 = 0
36x² - 84x + 49 = 9
(6x - 7)² = 9
6x - 7 = ±3
6x = 7 ± 3
x = (7 ± 3) / 6
x = 5 / 3; 2 / 3
Third method
9x² - 21x + 10 = 0
a = 9, b = -21 and c = 10
b² - 4ac = 81
x = (21 ± √81) / 18
x = (21 ± 9) / 18
x = (7 ± 3) / 6
x = 5 / 3; 2 / 3
Solve 10x² - 31x + 15 = 0 for x.
First method
10x² - 31x + 15 = 0
(2x - 5)(5x - 3) = 0
x = 5 / 2; 3 / 5
Second method
10x² - 31x + 15 = 0
400x² - 1,240x + 600 = 0
400x² - 1,240x + 961 = 361
(20x - 31)² = 361
20x - 31 = ±19
20x = 31 ± 19
x = (31 ± 19) / 20
x = 5 / 2; 3 / 5
Third method
10x² - 31x + 15 = 0
a = 10, b = -31 and c = 15
b² - 4ac = 361
x = (31 ± √361) / 20
x = (31 ± 19) / 20
x = 5 / 2; 3 / 5