Solve 6x² - 13x + 6 = 0 for x.
First method
6x² - 13x + 6 = 0
(2x - 3)(3x - 2) = 0
x = 3 / 2; 2 / 3
Second method
6x² - 13x + 6 = 0
144x² - 312x + 144 = 0
144x² - 312x + 169 = 25
(12x - 13)² = 25
12x - 13 = ±5
12x = 13 ± 5
x = (13 ± 5) / 12
x = 3 / 2; 2 / 3
Third method
6x² - 13x + 6 = 0
a = 6, b = -13 and c = 6
b² - 4ac = 25
x = (13 ± √25) / 12
x = (13 ± 5) / 12
x = 3 / 2; 2 / 3
Solve 10x² - 29x + 10 = 0 for x.
First method
10x² - 29x + 10 = 0
(2x - 5)(5x - 2) = 0
x = 5 / 2; 2 / 5
Second method
10x² - 29x + 10 = 0
400x² - 1,160x + 400 = 0
400x² - 1,160x + 841 = 441
(20x - 29)² = 441
20x - 29 = ±21
20x = 29 ± 21
x = (29 ± 21) / 20
x = 5 / 2; 2 / 5
Third method
10x² - 29x + 10 = 0
a = 10, b = -29 and c = 10
b² - 4ac = 441
x = (29 ± √441) / 20
x = (29 ± 21) / 20
x = 5 / 2; 2 / 5
Solve 15x² - 34x + 15 = 0 for x.
First method
15x² - 34x + 15 = 0
(3x - 5)(5x - 3) = 0
x = 5 / 3; 3 / 5
Second method
15x² - 34x + 15 = 0
225x² - 510x + 225 = 0
225x² - 510x + 289 = 64
(15x - 17)² = 64
15x - 17 = ±8
15x = 17 ± 8
x = (17 ± 8) / 15
x = 5 / 3; 3 / 5
Third method
15x² - 34x + 15 = 0
a = 15, b = -34 and c = 15
b² - 4ac = 256
x = (34 ± √256) / 30
x = (34 ± 16) / 30
x = (17 ± 8) / 15
x = 5 / 3; 3 / 5